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Abstract. We confront lattice QCD results on the transition from the hadronic phase to the quark–gluon
plasma with hadron resonance gas and percolation models. We argue that for T ≤ Tc the equation of state
derived from Monte Carlo simulations of (2 + 1) quark-flavor QCD can be well described by a hadron
resonance gas. We examine the quark mass dependence of the hadron spectrum on the lattice and discuss
its description in terms of the MIT bag model. This is used to formulate a resonance gas model for arbitrary
quark masses which can be compared to lattice calculations. We finally apply this model to the analysis of
the quark mass dependence of the critical temperature obtained in lattice calculations. We show that the
value of Tc for different quark masses agrees with lines of constant energy density in a hadron resonance
gas. For large quark masses a corresponding contribution from a glueball resonance gas is required.

1 Introduction

Long before lattice calculations provided first evidence [1]
for critical behavior in strongly interacting matter it has
been noticed [2] by Hagedorn that ordinary hadronic mat-
ter cannot persist as a hadronic resonance gas at arbitrary
high temperatures and densities. This lead to the concept
of the Hagedorn limiting temperature. With the formula-
tion of QCD it has been suggested [3] that a phase tran-
sition to a new form of matter, the quark–gluon plasma,
will occur.

Two basic properties of hadrons were essential for de-
veloping the concept of a natural end for the era of ordi-
nary hot and dense hadronic matter. In high energy ex-
periments it had been observed that strongly interacting
particles produce a large number of new resonances. More-
over, hadrons have been known to be extended particles
with a typical size of about 1 fm. As the average energy
per particle increases at high temperatures copious par-
ticle production will take place in a hadron gas and a
dense equilibrated system will result from this. At high
temperature, extended hadrons thus would start to “over-
lap”. This led to the expectation that some form of new
physics has to occur under such conditions. The expected
critical behavior has been analyzed in terms of various
phenomenological models which incorporate these basic
features (resonance production ⇒ Hagedorn’s bootstrap
model [2]; extended hadrons ⇒ percolation models [4]).
In fact, many of the basic properties of the dense matter
created today in heavy ion experiments can be understood

� Dedicated to Rolf Hagedorn

quite well in terms of the thermodynamics of a hadronic
resonance gas [5,6].

With the formulation of quantum chromodynamics
(QCD) as a theoretical framework for the strong inter-
action force among elementary particles it became clear
that this “new physics” indeed meant a phase transition
to a new phase of strongly interacting matter – the quark–
gluon plasma (QGP) [3]. As QCD is an asymptotically
free theory, the interaction vanishes logarithmically with
increasing temperature; it has been expected that at least
at very high temperatures the QGP would effectively be-
have like an ideal gas of quarks and gluons. Today we have
a lot of information from numerical calculations within the
framework of lattice regularized QCD about the thermo-
dynamics of hot and dense matter which give support to
these expectations. We know about the transition tem-
perature to the QGP and the temperature dependence
of basic bulk thermodynamic observables such as the en-
ergy density and the pressure [7]. In the coming years
the increase in numerical accuracy certainly will lead to
modifications of the quantitative details of these results.
However, already today they are sufficiently accurate to be
confronted with theoretical and phenomenological models
that provide a description of thermodynamics of strongly
interacting matter. Recently, progress has been made to
develop and link an improved perturbation theory of QCD
with lattice data on the equation of state in the deconfined
phase [8]. In this paper we analyze in how far the criti-
cal behavior can be understood in terms of the physical
degrees of freedom of the confined phase, i.e. those of a
hadronic resonance gas, and the intuitive percolation pic-
ture [9].
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Quite distinct from the phenomenological approaches
to the QCD phase transition are attempts to understand
the thermodynamics of strongly interacting matter in
terms of low energy effective theories, i.e. chiral pertur-
bation theory [10] and effective chiral models [11,12]. The
strength of these approaches is that they incorporate the
correct symmetries of the QCD Lagrangian and thus have
a chance to predict the universal properties, e.g. the or-
der of the phase transition, in the chiral limit of QCD.
They, however, generally ignore the contributions of heav-
ier resonances to the QCD thermodynamics which might
be crucial for the transition to the plasma phase at non-
vanishing values of the quark masses.

Lattice calculations provide detailed information on
the quark mass dependence of the transition to the QGP
as well as to the hadron spectrum at zero temperature.
In particular, we know that the transition temperature
drops substantially when decreasing the quark mass from
infinity (pure SU(3) gauge theory) to values close to the
physical quark mass. This drop in the critical temperature
can be understood at least qualitatively in terms of the rel-
evant degrees of freedom in the low temperature phase. In
the pure gauge limit this phase consists of rather heavy
glueballs (mG>∼1.5 GeV [13–15]). Quite a large tempera-
ture thus is needed to build up a sufficiently large density
of glueballs, which could lead to critical behavior (perco-
lation [9]). In the chiral limit, on the other hand, the low
critical temperature can be addressed in the presence of
light Goldstone particles, the pions, which can build up
a large (energy) density already at rather low tempera-
tures. Along with this decrease of the critical temperature
goes an increase in the critical energy density expressed in
units of the critical temperature, εc/T 4

c , by about an order
of magnitude. This reflects the importance of new degrees
of freedom in the presence of light quarks. However, at
the same time the critical energy density in physical units
(GeV/fm3) turns out to be almost quark mass indepen-
dent.

In this paper we want to focus on these results. We
will discuss in how far the quark mass dependence of
the transition temperature found in lattice calculations
is consistent with phenomenological models and what this
tells us about the influence of the chiral sector of QCD
on the transition temperature. In Sect. 2 we will briefly
summarize the formulation of hadron thermodynamics in
terms of a hadronic resonance gas. In Sect. 3 we discuss the
quark mass dependence of the hadron spectrum and give
a phenomenological parametrization motivated by the bag
model. Predictions of these phenomenological approaches
for the equation of state and the quark mass dependence
of the transition temperature are then compared with lat-
tice results in Sect. 4. Finally we give our conclusions in
Sect. 5.

2 Hadron resonance gas and the equation
of state on the lattice

The basic quantity required to verify thermodynamic
properties of QCD is the partition function1 Z(T, V ). The
grand canonical partition function is obtained by

Z(T, V ) = Tr[e−βH ], (1)

where H is the Hamiltonian of the system and β = 1/T is
the inverse temperature. The confined phase of QCD we
model as a non-interacting gas of resonances – the hadron
resonance gas model. To do so we use as Hamiltonian the
sum of kinetic energies of relativistic Fermi and Bose par-
ticles of mass mi.

The main motivation of using this Hamiltonian is that
it contains all relevant degrees of freedom of the confined,
strongly interacting matter and implicitly includes inter-
actions that result in resonance formation [2]. In addition
this model was shown to provide a quite satisfactory de-
scription of particle production in heavy ion collisions [5,
6,16].

With the above assumption on the dynamics the parti-
tion function can be calculated exactly and expressed as a
sum over one-particle partition functions Z1

i of all hadrons
and resonances,

lnZ(T, V ) =
∑

i

lnZ1
i (T, V ). (2)

For particles of mass mi and spin–isospin degeneracy fac-
tor gi the one-particle partition function Z1

i is given by

lnZ1
i (T, V ) =

V gi

2π2

∫ ∞

0
dpp2η ln(1 + ηe−βEi), (3)

where Ei =
√

p2 + m2
i is the particle energy and η = −1

for bosons and +1 for fermions.
Due to the factorization of the partition function in

(2) the energy density and the pressure of the hadron res-
onance gas,

ε =
∑

i

ε1i , P =
∑

i

P 1
i , (4)

are also expressed as sums over single particle contribu-
tions ε1i and P 1

i , respectively. These are given by

ε1i
T 4 =

gi

2π2

∞∑
k=1

(−η)k+1 (βmi)3

k

×
[
3 K2(kβmi)

kβmi
+ K1(kβmi)

]
, (5)

∆1
i ≡ ε1i − 3P 1

i

T 4

=
gi

2π2

∞∑
k=1

(−η)k+1 (βmi)3

k
K1(k βmi), (6)

where K1 and K2 are modified Bessel functions.
Summing up in (4) the contributions from experimen-

tally known hadronic states constitutes the resonance gas
model for the thermodynamics of the low temperature

1 We restrict our discussion to the case of vanishing chemical
potential (vanishing net baryon number) and charge neutral
systems
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phase of QCD. We take into account all mesonic and bary-
onic resonances with masses up to 1.8 GeV and 2.0 GeV,
respectively. This amounts to 1026 resonances. The en-
ergy density obtained in the resonance gas starts to rise
rapidly at a temperature of about 160 MeV. It reaches a
value of 0.3 GeV/fm3 at T � 155 MeV and 1 GeV/fm3 al-
ready at T � 180 MeV. This is in good agreement with
lattice calculations, which find [17] a critical energy den-
sity of about 0.7 GeV/fm3 at Tc � 170 MeV. For compar-
ison we note that a simple pion gas would only lead to an
energy density of about 0.1 GeV/fm3 at this temperature.
This suggests that a more quantitative comparison be-
tween numerical results obtained from lattice calculations
and the resonance gas model might indeed be meaningful.

3 Hadron spectrum in heavy quark mass limit

In order to use the resonance gas model for further com-
parison with lattice results we should take into account
that lattice calculations are generally performed with
quark masses heavier than those realized in nature. In fact,
we should take advantage of this by comparing lattice re-
sults obtained for different quark masses with resonance
gas model calculations based on a modified, quark mass
dependent, resonance spectrum.

Rather than converting the bare quark masses used in
lattice calculation into a renormalized mass it is much
more convenient to use directly the pion mass (mπ ∼√

mq), i.e. the mass of the Goldstone particle, as a control
parameter for the quark mass dependence of the hadron
spectrum.

For our thermodynamic considerations we need, at
present, not be concerned with the detailed structure of
the hadron spectrum in the light quark mass chiral limit.
We rather want to extract information on the gross fea-
tures of the quark mass dependence of a large set of res-
onances. In order to study the quark mass dependence
of hadron masses in the intermediate region between the
chiral and heavy quark mass limits we adopt here an
approach that is based on the Hamiltonian of the MIT
bag model [18]. Although, in the original formulation this
Hamiltonian breaks explicitly chiral symmetry and implies
non-conservation of the axial-vector current it still pro-
vides a satisfactory description of the hadron mass spec-
trum that can be used for our thermodynamic considera-
tions.

In the limit of a static, spherical cavity the energy of
the bag of radius R is given by

E = EV + E0 + EK + EM + EE . (7)

The first two terms are due to quantum fluctuations
and are assumed to depend only on the bag radius. The
volume and the zero-point energy terms have a generic
form

EV =
4
3
πBR3, E0 = −Z0

R
, (8)

where B is the bag constant and Z0 is a phenomenological
parameter attributed to the surface energy.

The quarks inside the bag contribute with their kinetic
and rest energy. Assuming N quarks of mass mi the quark
kinetic energy is determined from

EK =
1
R

N∑
i=1

[x2
i + (miR)2]1/2, (9)

where xi(mi, R) enters the expression on the frequency
ω = [x2 + (mR)2]1/2/R of the lowest quark mode and is
obtained [18] as the smallest positive root of the following
equation:

tan(xi) =
xi

1 − miR − √
x2

i + (miR)2
. (10)

The last two terms in (7) represent the color-magnetic
and -electric interaction of quarks. It is described by the
exchange of a single gluon between two quarks inside the
bag. The color-electric energy was found in [18] to be nu-
merical small and will be neglected in our further discus-
sion. The color-magnetic exchange term is given by

EM = 8kαc

∑
i<j

M(miR, mjR)
R

(σi · σj). (11)

Here αc is the strong coupling constant and k = 1 for
baryons and 2 for mesons. For a given spin configuration of
the bag the scalar spin product in (11) can easily be calcu-
lated. The function M(x, y) depends on the quark modes
magnetic moment and is described in detail in [18]. For
small x < 1 it shows a linear dependence on the argument
with M(0, 0) = 0.175.

The dependence of the energy on the bag radius can
be eliminated by the condition that the quark and gluon
field pressure balance the external vacuum pressure. For
a static spherical bag this condition is equivalent to min-
imizing E with respect to R. The true radius R0 of the
bag thus is determined from the condition ∂E/∂R = 0
and the hadron bag mass is then obtained from (7) with
R = R0.

To extract the physical mass spectrum from the MIT
bag model one still needs to fix the set of five parameters
that determine the bag energy. Following the original fit to
experimental data made in [18] we take B1/4 = 0.145 GeV,
Zo = 1.84 and αc = 0.55. These parameters together with
mu = md = 0 and ms = 0.279 GeV provide a quite sat-
isfactory description of hadron masses belonging to the
octet and decuplet of baryons and the octet of vector
mesons. Of course, the model fails to describe the details
of the chiral limit and, in particular, it leads to a too large
value of the pion mass that with the above set of param-
eters is mπ = 0.28 GeV. Nonetheless, the accuracy of the
bag model will be sufficient for our purpose.

The MIT bag model provides an explicit dependence of
hadron masses on the constituent quark mass. This depen-
dence is entirely determined by the kinetic and magnetic
energy of the quarks. To compare bag model calculations
with lattice calculations, which do not provide values for
constituent quark masses, it is best to express the quark
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Fig. 1. Dependence of different hadron masses mh on the pion
mass mπ. Both mh and mπ are expressed in the units of the
string tension

√
σ. Curves are the MIT bag model results (see

text for details). The filled circles represent the PC-PACS lat-
tice results from [23]. The filled diamonds are the Nf = 3,
whereas the open diamonds are Nf = 2 flavor results from
[22]. The filled-boxes are quenched QCD results [24]. All other
points are from [25]. Both the lattice data and the bag model
results are shifted in mh-direction by a constant factor as in-
dicated in the figure

mass dependence in terms of the pion mass, which is most
sensitive to changes of the quark masses. In Fig. 1 we show
the resulting dependence of different hadron masses on
the pion mass with the bag parameters described above
but with varying mu. The masses are expressed in units
of the square root of the string tension for which we use√

σ = 420 MeV.
The model predictions are compared with recent lat-

tice data on hadron masses calculated for different current
quark masses [22–25]. The MIT bag model is seen in Fig. 1
to describe lattice results quite well. This is particularly
the case for larger quark masses such that mπ >

√
σ. For

mπ <
√

σ the deviations of the model from the lattice re-
sults are quite apparent. As mentioned this is, of course,
mainly due to the well known limitations of the bag model
when approaching the chiral limit.

For large quark masses the bag model description of
hadron masses reproduces the naive parton model picture
and consequently all hadron masses are almost linearly
increasing with the pion mass as seen in Fig. 1. This is
to be expected as in this case the energy of the bag is en-
tirely determined by the quark rest mass. As seen in Fig. 1
the slope increases with the number of non-strange con-
stituent quarks inside the bag. Consequently, the slopes

Table 1. Parameters entering the interpolation formula for
non-strange hadron masses given in (12)

a1 a2 a3 a4 a5

0.51 ± 0.1 a1Nu
m0

0.115 ± 0.02 −0.0223 ± 0.008 0.0028 ± 0.0015

of (Ξ∗, Ξ) and (K, K∗) or (Σ∗, Λ) and ρ coincide at large
mπ.

In order to formulate a resonance gas model for arbi-
trary quark masses we need to know the quark mass de-
pendence of much more resonances than the few hadronic
states shown in Fig. 1. We thus looked for a phenomeno-
logical parameterization of the quark mass dependence of
resonances, expressed in terms of the pion mass. Figure 1
suggests that already at intermediate values of the quark
mass, mπ>∼

√
σ, this dependence is dominated by the quark

rest mass and does not depend much on the hadronic
quantum numbers. This suggests that a common param-
eterization of all hadronic states, which is consistent with
the naive parton model picture for large quark masses and
reproduces the experimental values of hadronic states in
the light quark mass limit, is sufficient for our thermo-
dynamic considerations. To incorporate these features we
use the ansatz

M(x)√
σ

� Nua1x +
m0

1 + a2x + a3x2 + a4x3 + a5x4 , (12)

which provides a good description of the MIT bag model
result for non-strange hadron masses calculated for differ-
ent values of mπ. Here x ≡ mπ/

√
σ, m0 ≡ mh/

√
σ, Nu is

the number of light quarks inside the hadron (Nu = 2 for
mesons, Nu = 3 for baryons) and σ = (0.42 GeV)2 is the
string tension.

The parameters appearing in (12) were optimized such
that they reproduce the MIT bag model results for the
mπ-dependence of the ρ vector meson mass and are sum-
marized in Table 1. In the mass regime shown in Fig. 1,
(12) reproduces the quark mass dependence of all non-
strange hadron masses obtained from the bag model
within a relative error of <∼6%.

In the following we will use (12) to formulate a hadron
resonance gas model with varying quark masses and com-
pare its predictions with the lattice calculation of QCD
thermodynamics.

In Fig. 2 we show the temperature dependence of the
energy density ε and the interaction measure ∆ for the
hadron resonance gas obtained from (4)–(6) and (12). The
model predictions are compared with Monte Carlo results
obtained [17] on the lattice in (2+1) flavor QCD. Although
it should be noted that the lattice calculations have not
yet been performed with the correct quark mass spectrum
realized in nature, as the pion mass mπ ∼ 1.8

√
σ, the res-

onance gas model and the lattice data agree quite well.
This indicates that for T ≤ Tc hadronic resonances are
indeed the most important degrees of freedom in the con-
fined phase.

In the next section we will discuss in how far this model
can provide a quantitative description of the transition
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Fig. 2. The left-hand figure shows the energy density ε in units of T 4 calculated on the lattice with (2 + 1) quark flavors as a
function of the T/Tc ratio. The right-hand figure represents the corresponding results for the interaction measure (ε − 3P )/T 4.
The full lines are the results of the hadron resonance gas model that accounts for all mesonic and baryonic resonances
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Fig. 3. The transition temperature in 2- (filled squares) and 3-
(circles) flavor QCD versus mPS/

√
σ using an improved stag-

gered fermion action (p4-action). Also shown are results for
2-flavor QCD obtained with the standard staggered fermion
action (open squares). The dashed band indicates the uncer-
tainty on Tc/

√
σ in the quenched limit. The straight line is the

fit given in (13)

temperature obtained on the lattice for different quark
masses.

4 Quark mass dependence
of the QCD transition

We want to confront here the resonance gas model devel-
oped in the previous section with lattice results on the
quark mass dependence of the QCD transition tempera-
ture and use it to learn about the critical conditions near
deconfinement. Lattice calculations suggest that this tran-
sition is a true phase transition only in small quark mass
intervals in the light and heavy quark mass regime, re-
spectively. In a broad intermediate regime, in which the
pion mass changes by more than an order of magnitude,
the transition is not related to any singular behavior of
the QCD partition function. Nonetheless, it still is well

localized and is characterized by rapid changes of thermo-
dynamic quantities in a narrow temperature interval. The
transition temperature thus is well defined and is deter-
mined in lattice calculations through the location of max-
ima in response functions such as the chiral susceptibility.
A collection of transition temperatures obtained in calcu-
lations with 2 and 3 quark flavors with degenerate masses
is shown in Fig. 3. The main feature of the numerical re-
sults which we want to explore here is that the transition
temperature varies rather slowly with the quark mass. In
[17] the almost linear behavior has been described by the
fit (

Tc√
σ

)
mPS/

√
σ

= 0.4 + 0.04(1)
(

mPS√
σ

)
, (13)

which also is shown in Fig. 3. For pion masses mPS ∼ (6–
7)

√
σ � 2.5 GeV the transition temperature reaches the

pure gauge value, Tc/
√

σ � 0.632(2) [27].
We note that all numerical results shown in Fig. 3 do

correspond to quark mass values in the crossover regime.
Also the resonance gas model formulated in the previous
section does not lead to a true phase transition. We thus
may ask what the conditions in a hadron gas are that trig-
ger the transition to the plasma phase. Using the hadron
gas with a quark mass dependent hadron mass spectrum
and including the same set of 1026 resonances which have
been included in other phenomenological calculations [5,
6] we have constructed resonance gas models for 2- and 3-
flavor QCD, respectively. In the former case we eliminate
all states containing strange quarks whereas in the latter
case we assigned to meson states containing strange parti-
cles the corresponding masses of non-strange particles, e.g.
kaons have been replaced by pions etc. With these reso-
nance gas models we have calculated the energy density at
the transition temperature. We use Tc = 175 (15) MeV for
2-flavor QCD and Tc = 155 (15) MeV for 3-flavor QCD, re-
spectively. For the energy densities at the transition point
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Fig. 4. The transition temperature versus pion mass obtained in lattice calculations and lines of constant energy density
calculated in a resonance gas model. The left-hand figure shows a comparison of constant energy density lines at 1.2 (upper),
0.8 (middle) and 0.4 (lower) GeV/fm3 with lattice results for 2-flavor QCD obtained with improved staggered [17] as well as
improved Wilson [19–21] fermion formulations. Tc as well as mPS are expressed in terms of the corresponding vector meson
mass. The right-hand figure shows results for 2- and 3-flavor QCD compared to lines of constant energy density of 0.8 GeV/fm3.
Here Tc and mPS are expressed in units of

√
σ. For a detailed description see text

we then find

( ε

T 4

)
T=Tc

�
{

4.5 ± 1.5, 2-flavor,
7.5 ± 2, 3-flavor. (14)

This is in good agreement with the lattice result, ε/T 4
c =

(6 ± 2) quoted in [28] as an average for the 2- and 3-
flavor energy densities. In fact, as can be seen from Fig. 5
in [28] the difference in ε/T 4

c in the lattice results is of
similar magnitude as we found here from the resonance
gas model. The lattice results for 2- and 3-flavor QCD thus
suggest that the conditions at the transition point are well
described by a resonance gas. For comparison we also note
that in the 2-flavor case a pion gas does contribute only
about 20% to this energy density2 and also a gas build
up from the 20 lowest resonances would give rise only to
about half the critical energy density, i.e. ε/T 4

c � 1.9.
Although the lattice results allow, at present, only to

determine the critical energy density within a factor (2–
3) it is striking that the transition occurs at similar val-
ues of the energy density in QCD with light quarks as
well as in the pure gauge theory, although the transition
temperature shifts by about 40% and ε/T 4

c differs by an
order of magnitude. It thus has been suggested that for
arbitrary quark masses the transition occurs at roughly
constant energy density. Such an assumption is, in fact,
supported by our resonance gas model constructed in the
previous section for arbitrary values of the quark masses.
In Fig. 4 we show lines of constant energy density calcu-
lated in the resonance gas model and compare these to
the transition temperatures obtained in lattice calcula-
tions. As can be seen, the agreement is quite good up to
masses mPS � 3

√
σ or mPS � 1.2 GeV. The reason for the

deviations at larger values of the quark mass, of course,
is the fact that we have neglected so far completely the
glueball sector in our considerations.

When the lightest hadron mass becomes comparable to
typical glueball masses, also the glueball sector will start
to contribute a significant fraction to the energy density.

2 For massless pions we have ε/T 4 = (n2
f − 1)π2/30 � 1
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Fig. 5. The transition temperature in 3-flavor QCD compared
to lines of constant energy density (ε = 0.8 GeV/fm3) in a
hadronic resonance gas (upper curve), a hadronic resonance gas
with 15 glueball states added (middle curve) and a hadronic
resonance gas with 15 glueball states with a 40% reduced mass
(lower curve)

Using the set of 15 different glueball states so far identified
in lattice calculations [13] we have calculated their contri-
bution to the total energy density. At mPS/

√
σ � 6.5 they

contribute as much as the entire hadronic sector.
However, as can be seen in Fig. 5 the contribution of

these 15 states only leads to a small shift in the lines of
constant energy density. Similar to the hadronic resonance
gas for small quark masses where the 20 low-lying states
only contribute 50% of the total energy density one has
to expect that also in the large quark mass limit further
glueball states, which have so far not been identified, will
contribute to the thermodynamics. Further support for
this comes from a calculation of the energy density of the
15 known glueball states at the transition temperature of
the pure gauge theory, T = 0.63

√
σ. For this we obtain

ε(T = 0.63
√

σ) �= .06 GeV/fm3 or equivalently ε/T 4
c �

0.1, which is about 20% of the overall energy density at Tc.
The contribution of the 15 glueball states thus does

not seem to be sufficient. In fact, the transition tempera-
ture in d-dimensional SU(Nc) gauge theories is well under-
stood in terms of the critical temperature of string models,
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Tc/
√

σ =
√

3/π(d − 2), which also is due to an exponen-
tially rising “mass” spectrum for string excitations [29].

It is conceivable that extending the glueball mass spec-
trum to all higher excited states will improve the results
shown in Fig. 5. On the other hand one also should stress
that the glueball states used in our calculations were ob-
tained in quenched QCD and at zero temperature. There
are indications from lattice calculations that glueball
masses could be modified substantially in the presence of
dynamical quarks [15] as well as at finite temperature [14].
The analysis of glueball states at high temperature [14]
suggests that their masses can drop by ∼ (20–40)%. As
all glueballs are heavy on the temperature scale of interest,
shifts in their masses influence the thermodynamics much
more strongly than in the light quark mass regime where
the lowest state has already a mass which is of the order
of the transition temperature. In fact, we find that tak-
ing into account a possible decrease of the glueball masses
close to Tc seems to be more important than adding fur-
ther heavy states to the spectrum. We thus have included
a possible reduction of glueball masses in the equation
of state. The resulting Tc with this modification is also
shown in Fig. 5. Decreasing the glueball masses increases
the thermal phase space available for particles, thus conse-
quently the temperature required to get ε = 0.8 GeV/fm3

is decreasing. As can be seen in Fig. 5 a reduction of glue-
ball masses by 40% is sufficient to reproduce lattice results
in the whole mπ range. However, to make this comparison
more precise it clearly would be important to get a more
detailed understanding of the glueball sector.

5 Conclusions

In this paper we have analyzed lattice results on QCD
thermodynamics using a phenomenological hadron reso-
nance gas model. We have shown that close to the chiral
limit and for T ≤ Tc the equation of state derived on the
lattice is quantitatively well described by the resonance
gas.

The hadron resonance gas partition function is also
shown to be suitable to describe lattice results for finite
quark masses and a varying number of flavors. One needs,
however, to implement the quark mass dependence in the
hadron spectrum and for large values of the quark mass
the glueball degrees of freedom start to play an important
role. We have shown that, beyond the chiral limit, the
quark mass dependence arising from the MIT bag model
agrees quite well with the hadron mass spectrum calcu-
lated on the lattice. We find that the transition temper-
atures obtained in lattice calculations at different values
of the quark mass are well described by lines of constant
energy density in a resonance gas model. For moderate
values of the quark masses the predictions of the hadron
resonance model coincide with lattice calculations. How-
ever, for heavy quark masses this agreement could only
be achieved by including additional heavy glueball states
or allowing for a reduction of glueball masses close to the
transition temperature by about 40%.

Our results can be considered as an indication that the
thermodynamics in the vicinity of deconfinement is indeed
driven by the higher excited hadronic states. This finding
can give additional support for previous phenomenologi-
cal applications of the resonance gas partition function in
the description of particle production in heavy ion colli-
sions. Our discussion of the critical temperature and its
quark mass dependence also indicates that deconfinement
in QCD to a large extent is density driven. It would be in-
teresting to see to what extent the lines of constant energy
density of the generalized hadron resonance gas can be re-
lated to correspondingly generalized percolation models.
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